Elasmobranch medicine: history, clinical exams and diagnostics

Catherine A. Hadfield MA VetMB MRCVS
January 2008
What is an elasmobranch?

- Jawed fish (gnathostoma)
- Cartilaginous skeleton (chondrichthyes)
- Maxilla not fused to skull
What is an elasmobranch?

- **1,125 extant species** *(Compagno 2005)*

- **Shark orders**
 - Fusiform, lateral gill slits

- **Batoid orders** – skates, rays, guitarfish, sawfish
 - DV flattened, ventral gill slits
Elasmobranchs

• Respiratory system
 – Gills for gaseous exchange
 • 5 (or 6-7) paired gill arches
 – Use pressure changes to move water over gills
 • In through mouth or spiracles
 • Out through gill slits
 – Some ram ventilators
Elasmobranchs

- Cardiovascular system
 - 2 chambered heart
 - Hematopoiesis in spleen, epigonal and Leydig organs
 - Innate and learned immunity
Elasmobranchs

- **GI tract**
 - Oral cavity, esophagus, stomach, intestine with spiral valve, rectum, rectal gland, cloaca

- **Liver**
 - Two large lobes ± gall bladder
 - Rich in fats

- **Spleen + pancreas**
Elasmobranchs

• Urogenital system
 – Male: Paired testes, deferent duct, claspers
 – Female: Paired ovaries, only one is active, oviduct + glands, bicornate uterus, cervix

 – Mating is extremely aggressive

 – Various reproductive strategies
 • Oviparous e.g., zebra sharks, skates
 • Ovoviviparous e.g., sting rays
 • Viviparous e.g., hammerheads
Elasmobranchs

- **Musculoskeletal**
 - Cartilaginous skeleton

- **Integument**
 - Denticles
 - Fins: dorsals, pectoral, pelvic, anal, caudal
Elasmobranchs

• Sensory system
 – Vision
 – Chemoreception: nares, taste
 – Vibration: inner ear, lateral line
 – Electrorception: ampullae of Lorenzini

 – Electric organs in electric rays
Now, for the water...

- Fish are completely dependent on the water for
 - Oxygen
 - Temperature
 - Waste excretion (H^+, CO_2, N_2)
 - Ionic balance

- These can all be measured in the water

- Abrupt changes in these parameters are very detrimental
Water parameters

• Oxygen
 – Dissolved oxygen (DO) is provided by water flow, air pumps and photosynthesis
 – Measured using O2 meters
 • Should be > 6-15 ppm (mg/L) or > 90 %
 – Assumed to be low with
 • Low water flow
 • High temps
 • High organic load
Water parameters

• Temperature
 – Ectotherms
 – Evolved to live within specific temp ranges
 – Temp affects
 • Food intake + digestion
 • Immunity, pathogen load and drug Pk
 • Water chemistry (DO, toxicities)

– Appropriate temp provided by heat exchangers
Water parameters

- Waste excretion
 - Proteins are broken down to toxic urea, NH\textsubscript{3} and TMAOs
 - Urea
 - Stays in plasma at levels toxic to all other vertebrates
 - Commensal ureolytic bacteria (\textit{Clostridium} and \textit{Vibrio}) in tissue
 - TMAOs in blood to protect proteins
 - NH\textsubscript{3}
 - Excreted across the gills
 - Oxidized by bacteria in environment
 - These essential bacteria are cultivated in biological filters
Water parameters

Fish

Plants + algae

urea → $\text{NH}_3/\text{NH}_4^+$ → NO_2^- → NO_3^-

NH_3, NO_2^-, and NO_3^{2-} measured using commercial assays

Ideal: <0.02 ppm
Not: >0.2 ppm

$\text{Nitrosomonas} + ?$ $\text{Nitrobacter} + ?$

bacteria
fungi

O_2
Water parameters

![Graph showing water parameters over time with peaks for ammonia (NH3), nitrite (NO2), and nitrate (NO3).](image)
Water parameters

- Ions
 - Salinity = all salts
 - Most sp are marine (25-35 ppt or g/L); some freshwater; some euryhaline (bull sharks!)
 - pH = - log [H⁺]
 - Alkalinity = anions (buffering capacity) e.g., HCO₃⁻
 - Hardness = cations (essential minerals) e.g., Ca²⁺, Mg²⁺

- Measured using conductivity meters + commercial assays
So, onto the actual case...

1. Signalment and history
 - Animals affected and other species
 - System, water and diet information

2. Clinical exam
 - Observation of animals and environment
 - Hands-on exam where necessary

3. Further diagnostics

4. Differential list

5. Treatment plan
History

- **Animals affected**
 - Species, size, date of acquisition, medical history, clinical signs, onset and progression (acute/chronic)

- **Other species in system**
 - Fish, plants, invertebrates
 - Most recent introductions
 - Biosecurity (cleaning, disinfection, vaccination, quarantine)
History

• **System information**
 – Type (open, flow-through, closed)
 – Size
 – Time in operation
 – ‘Life support’ - these ALL require maintenance
 • Air pumps, water pumps
 • Mechanical filters e.g., protein skimmers, sand filters
 • Biological filters e.g., canister
 • Chemical and other filters e.g., ozone, UV sterilizers
 • Heaters/chillers
 • Lights
History

• Water
 – Source (tap-water, sea water)
 – Additions (conditioners, salts, meds), contaminants
 – Water turnover (volume + frequency of changes)
 – Water parameters (target + actual)
 • Temperature
 • Dissolved oxygen
 • Salinity
 • pH
 • NH_3, NO_2^-, NO_3^-
 • Alkalinity, hardness
 • Cu^{2+}, Zn^{2+}
History

• **Diet**
 - Food fed (historic and recent)
 - Frequency and weight
 - Storage and thawing
 - Supplements (MUST add vit B₁, C, E, iodide)

• **Dietary deficiencies are very common**

• **Food intake is essential for hydration**
Clinical exam - observation

- Observation of the animals
 - Alertness, responsiveness (‘BAR’)
 - Ventilation
 - Swimming behavior and position
 - Body condition
 - External lesions
 - Eyes, mouth, skin, fins and claspers, cloaca

- Always compare to the species normals
Clinical exam - observation

- **Observation of the environment**
 - Tank and décor
 - Tank mates
 - Life support systems
 - Water

- **Are these all suitable?**

- **Aggression, trauma and poor water quality are extremely common**
Clinical exam - restraint

• First, do you really need to get hands on?
 – Risk of trauma
 – Risk of acidosis

• Second, do you need manual or chemical restraint?
 – Manual:
 • Sufficient personnel
 • Calm species (‘tonic immobility’ in VD recumbency)
 • Non-invasive
 – Chemical:
 • Fractious species (e.g., reef sharks, pelagic rays)
 • Invasive procedure
Clinical exam - restraint

Some general principals:

- ALWAYS have all the equipment ready
- Use original source water
- Keep the gills and skin wet
- Consider temp, NH₃, DO
 - Aerate well
 - Obligate ram ventilators
 - Monitor if procedure is long
Clinical exam - manual restraint

Some hazards!

Cut the spines from stingrays

Hold sharks + sawfish behind the head (avoiding gill slits)
Clinical exam - chemical restraint

- **MS-222** bath (tricaine methane sulfonate, Finquel)
 - 40-50 ppm or mg/L for sedation
 - Up to 100 ppm for anesthesia
 - Licensed in fin fish in US + UK, not Canada
 - Wear gloves

- Eugenol (in clove oil) bath
- Propofol IV or ICe
- Ketamine ± medetomidine or xylazine IM
Clinical exam - chemical restraint

• **Stages of anesthesia**
 - Early: Ataxia, excitement
 - Surgical: Loss of responses, slow and shallow resps
 - Excessive depth: Loss of resps, cardiovascular collapse

• **Monitor**
 - Aeration (flow of water, gilling rate, gill color)
 - Heart rate (Doppler or B-mode US)
 - Temperature

• **Allow full recovery before re-introducing tank mates**
Clinical exam

- Examine eyes, nares, oral cavity, spiracles, gill slits
- Examine entire skin surface
- Examine claspers, cloaca
- Palpate coelom, M/S system
Diagnostics

• The list...
 – Morphometrics
 – Skin scrapes
 – Fecal analysis
 – Diagnostic imaging
 – Biopsies/aspirates
 • Gills, masses
 – Blood sampling
 – Necropsy
Morphometrics

- Always obtain a weight
- **Sharks**
 - Total length
 - Precaudal length
 - Clasper length
- **Batoids**
 - Disc width
 - Clasper length
Skin scrapes

- **Method**
 - Use scalpel blade
 - Add drop of tank water and a coverslip
 - Examine under direct microscopy ASAP at x40-400

- **Abnormalities include monogene trematodes** (flukes) e.g., *Dermophthirius* and *Dermophthiodes*
Fecal analysis

• **Method**
 - Obtain by cloacal wash
 - Direct, float, Dif-Quik stain, Gram stain

• **Abnormalities include**
 - Coccidia
 - Nematodes
 - Trematodes
 - Cestodes
 - White blood cells
 - Significant Gram positive flora
Diagnostic imaging

- **Ultrasonography**
 - Excellent soft tissue detail (cardiac, GIT, liver and gall bladder, pancreas, spleen, UG tract)
 - Good for dystocia, pyometra, neoplasia, goiter
Diagnostic imaging

- **Radiography**
 - Good cartilage detail and gaseous detail (e.g., necrotic pups)
 - Contrast studies provide good GIT detail
Tissue sampling

- Biopsy gill filaments

- Aspirate or biopsy any masses or fluid accumulations
 - Cytologies
 - Fluid analysis
 - Cultures
 - Histology
 - Viral isolation
 - Electron microscopy
Blood sampling

- **Anticoagulants**
 - **Sharks**
 - Dry EDTA preferable
 - Dry heparin
 - **Batoids**
 - Dry heparin preferable

Remember these blood cells are fragile and the plasma is very concentrated
Venipuncture sites – all species

- Ventral tail vein
 - MUST be midline
Venipuncture sites - sharks

- Posterior cardinal veins
 - Caudolateral to either dorsal fin
1. Blood culture
2. Blood smears
 - Wright or Dif-Quik for differential
 - Gram stain for bacteria
3. PCV, TS, i-STAT
4. Total cell counts
5. Plasma/serum separated
 - Allow 2-4hrs to clot
 - Dilute for BUN, Na, Cl

Whole blood will not survive overnight
Blood cells

• Red blood cells
 – Large (2.5x mammals) and nucleated
 – Immature forms common
 – HCT lower than mammals
 – RBC very unreliable

• Thrombocytes
 – Some species have 2 types
White blood cells

- WBC count >> mammals, up to 40,000/mm³
- Leukocyte nomenclature very confusing
 - Species differences
 - Different stages of cell maturity
White blood cells

- **Lymphocytes**
 - Most common cell type

- **Coarse eosinophilic granulocytes (CEG)**
 - Major phagocytes

- **Fine eosinophilic granulocytes (FEG)**
 - Have been called heterophils

- **Neutrophils**

- **Monocytes**

- **Basophils**
 - Common in rays only
Chemistries

• **Plasma osmolality**
 - 800-1100 mOsm/kg

• **Proteins**
 - TS by refractometer ~ 2 x TP by colorimetric assay
 - Albumin very low

• **Glucose**
 - Lower than other vertebrates

• **Tissue enzymes vary by species**

• **pH ~7**
 - Acidosis common
Euthanasia

- **Recommended (AVMA, 2006)**
 - MS-222 bath, >500 mg/L for 15 mins following loss of gilling
 - Sedation followed by pentobarbital IV or intracardiac, >100 mg/kg
 - Cranial concussion, decapitation then pithing

- **NOT approved**
 - Eugenol (clove oil)
 - Cooling/freezing
 - Asphyxiation
Necropsy

• Must be SOON

• Plan samples before starting
 – Cultures (bacterial, fungal, VI)
 • Liver + CSF
 – Squash preps
 – Stained impression smears (DQ, GS)
 – Formalin-fixed and frozen tissue
Necropsy - shark
Necropsy - batoid
Necropsy - batoid
Necropsy – ‘squash preps’

- **Sample sites:** gills, skin, fin, liver, spleen, kidney, gonads, GIT, lesions

- **Method:**
 - Take a small 1-2mm diameter section
 - Squash under a coverslip with a drop of saline
 - Examine at x40-x100
Necropsy – ‘squash preps’

• Abnormalities - infectious agents:
 – Fungi
 – Bacteria (shape and motility)
 – ‘Sporozoa’, protozoa
 – Nematodes
 – Trematodes
 – Acanthocephalans
 – Pentasomids
Necropsy – ‘squash preps’

- Abnormalities:
 - Granulomas
 - Increased melanomacrophage centers (chronic stress)
 - Increased WBC

- Also used to identify tissues and confirm tissue architecture and sex
Necropsy – impression smears

- Sample sites: liver, spleen, kidney, gall bladder, lesions

- Methods:
 - Take a small 2mm section
 - Dab on tissue
 - Make 2-3 touch impressions
 - Gram stain, Dif-Quik, modified acid-fast, PAS
Necropsy – impression smears

• Abnormalities:
 – Fungi
 – Bacteria (size, shape, stain, group)
 – ‘Sporozoa’, protozoa
 – White blood cells
 – Hyperplastic/neoplastic cells
Necropsy – other samples

- **Histopath**
 - Formalin-fixed (10% NBF), Bouin’s, Davidson’s, alcohol
 - H+E, GS, AF
 - Where? NW Zoo path, U Connecticut
- **Structural tests**
 - SEM, TEM
- **Antibody tests**
 - ELISA
 - IFA
 - Virus neutralization
- **DNA tests**
 - PCR
 - Sequencing
- **Toxicology**
Summary

• Elasmobranch health is completely dependent on the environment, water and diet that is provided

• Trauma, poor water quality and dietary deficiencies are common, and can be determined from a thorough history and observation

• Hands-on diagnostics are possible in most clinical settings

• Where further diagnostics are required, normal values from a conspecific are useful
For more info...

- **Books**
 - Fish medicine (Stoskopf)
 - Fish disease (Noga)
 - Elasmobranch husbandry manual (Smith)
 - BSAVA manual of ornamental fish (Wildgoose)

- **Journals**
 - Diseases of aquatic organisms
 - Vet clinics of north America
 - Exotic pet medicine
 - Journal of zoo and wildlife medicine
 - Journal of aquatic animal health

- **Conferences**
 - Eastern fish health workshop
 - International association of aquatic animal medicine

- **Courses**
 - Aquavet and others (Cornell, Penn, Florida, Davis, N Carolina)